We consider a model for gamma-ray bursts (GRBs) from high-velocity neutron
stars in the galactic halo. In this model, bursters are born in the galactic
disk with large recoil velocities V_r, and GRBs are beamed to within emission
cones of half-angle \phi centered on V_r. We describe scenarios for
magnetically -channeled GRBs that have such beaming characteristics. We then
make detailed comparisons of this halo beaming model (HBM) to BATSE and PVO
data for GRB intensity & angular position distributions. Acceptable fits to
observations of over 1000 bursts are obtained for \phi = 15 - 30 degrees and
for a BATSE sampling depth ~ 180 kpc. Present data favor a truly isotropic
(cosmological) model over the HBM, but not by a statistically compelling
margin. Bursters born in nearby external galaxies, such as M31, are almost
entirely undetectable in the HBM because of misdirected beaming. We analyze
several refinements of the basic HBM: gamma-ray intensities that vary with
angle from the beam axis; non-standard-candle GRB luminosity functions; and
models including a subset of bursters that do not escape from the galaxy. We
also discuss the energy budgets for the bursters, the origins of their recoils,
and the physics of burst beaming and alignment. One possible physical model is
based on the magnetar model of soft gamma repeaters (SGRs). Empirical bounds on
the rate of formation and peculiar velocities of SGRs imply that there exist ~
10^4 to ~ 10^7 aged SGRs in the galactic halo within a distance of 100 kpc. The
HBM gives an acceptable fit to observations only if it satisfies certain
conditions (e.g. \phi ~ 20 deg) which are possible, but for which there exist
no clear & compelling theoretical justifications. The cosmological burster
hypothesis is more generic and thus more attractive in this sense. (Abbreviated
Abstract).Comment: ApJ accepted, 9 figures, AASTE