Near Infrared Thermal Imaging for Process Monitoring in Additive Manufacturing

Abstract

This work presents the design and development of a near infrared thermal imaging system specifically designed for process monitoring of additive manufacturing. The overall aims of the work were to use in situ thermal imaging to develop methods for monitoring process parameters of additive manufacturing processes. The main motivations are the recent growth in use of additive manufacturing and the underutilisation of near infrared camera technology in thermal imaging. The combination of these two technologies presents opportunities for unique process monitoring methods which are demonstrated here. A thermal imaging system was designed for monitoring the electron beam melting process of an Arcam S12. With this system a new method of dynamic emissivity correction based on tracking the melted material is shown. This allows for the automatic application of emissivity values to previously melted areas of a layer image. This reduces the potential temperature error in the thermal image caused by incorrect emissivity values or the assumption of a single value for a whole image. Methods for determining materials properties such as porosity and tensile strength from the in situ thermal imaging are also shown. This kind of analysis from in situ images is the groundwork for allowing part properties to be tuned at build time and could remove the need for post build testing that would determine if it is suitable for use. The system was also used to image electron beam welding and gas tungsten arc welding. With the electron beam welding of dissimilar metals, the thermal images were able to show the preheating effect that the melt pool had on the materials, the suspected reason for the process’s success. For the gas tungsten arc welding process analysis methods that would predict weld quality were developed, with the aim of later integrating these into the robotic welding process. Methods for detecting the freezing point of the weld bead and tracking slag spots were developed, both of which could be used as indicators of weld quality or defects. A machine learning algorithm was also applied to images of pipe welding on this process. The aim of this was to develop an image segmentation algorithm that could be used to measure parts of the weld in process and inform other analysis, like those above

    Similar works