research

Coordinated NanoSIMS and TEM Analysis of a Large 26Mg-Rich AGB Silicate from the Meteorite Hills 00426 CR2 Chondrite

Abstract

Silicates are one of the most abundant presolar phases around evolved stars, in the inter-stellar medium (ISM), and in our Solar System. These grains afford the opportunity for O, Si, Mg, Fe, and Ca isotopic analyses to constrain stellar nucleosynthetic and mixing processes, and Galactic chemical evolution (GCE). While Mg and Fe isotopic studies have been successfully conducted on presolar silicates, isotopic analyses beyond O and Si are often hampered by the small grain sizes (average ~250 nm). This also makes coordinated mineral and chemical characterization challenging. These studies provide insight into the dust condensation conditions as well as subsequent alteration in the ISM and/or the Solar System. TEM studies of presolar silicates have shown that they are much more mineralogically and chemically diverse than other presolar phases [1 and references therein]. Large (>500nm) presolar silicate grains are rare, but they allow for detailed isotopic, mineral, and chemical characterization. We identified a large presolar silicate grain in the MET 00426 CR2 chondrite and report the O, Si, Mg, and Fe isotopic compositions and TEM study of this grain

    Similar works