As a Lagrangian particle method, smoothed particle hydrodynamics (SPH) has been applied into the problems of fluid-structure interaction (FSI) more and more. However, the transient fluid-structure interactions characterized by severe reactions and wide spreads are very expensive to be carried out with three-dimensional SPH method due to the approach of solid modeling, especially when the structure is subjected to the shock loads from mid-field or far-field, which is almost impossible to achieve. Therefore, based on the previous research, the coupled SPH-BEM method is put forward and applied to underwater explosion in this paper. The structure is modeled and solved with SPH method while the fluid boundary only required is coped with a boundary element method (BEM), the second-order doubly asymptotic approximations (DAA2). The FSI method will reduce the elements of structures and fluid greatly so as to solve the problems of fluid-structure interactions feasibly and efficiently. The mid-plane of a plate only discretized into a layer of particles is taken as the study object in the SPH shell element and the related physical quantities is integrated in the thickness direction to capture the dynamic response of structures; the fluid boundary only discretized into a piece of boundary elements is employed in the BEM method to solve fluid dynamics based on the retarded potential equation; treatments of the coupled fluid-structure interface are made to satisfy the compatibility conditions and the messages related to motions and loads are well delivered. Finally, two standard examples are carried out to test the above algorithm