Continuous-action reinforcement learning for memory allocation in virtualized servers

Abstract

In a virtualized computing server (node) with multiple Virtual Machines (VMs), it is necessary to dynamically allocate memory among the VMs. In many cases, this is done only considering the memory demand of each VM without having a node-wide view. There are many solutions for the dynamic memory allocation problem, some of which use machine learning in some form. This paper introduces CAVMem (Continuous-Action Algorithm for Virtualized Memory Management), a proof-of-concept mechanism for a decentralized dynamic memory allocation solution in virtualized nodes that applies a continuous-action reinforcement learning (RL) algorithm called Deep Deterministic Policy Gradient (DDPG). CAVMem with DDPG is compared with other RL algorithms such as Q-Learning (QL) and Deep Q-Learning (DQL) in an environment that models a virtualized node. In order to obtain linear scaling and be able to dynamically add and remove VMs, CAVMem has one agent per VM connected via a lightweight coordination mechanism. The agents learn how much memory to bid for or return, in a given state, so that each VM obtains a fair level of performance subject to the available memory resources. Our results show that CAVMem with DDPG performs better than QL and a static allocation case, but it is competitive with DQL. However, CAVMem incurs significant less training overheads than DQL, making the continuous-action approach a more cost-effective solution.This research is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 754337 (EuroEXA) and the European Union’s 7th Framework Programme under grant agreement number 610456 (Euroserver). It also received funding from the Spanish Ministry of Science and Technology (project TIN2015-65316-P), Generalitat de Catalunya (contract 2014-SGR-1272), and the Severo Ochoa Programme (SEV-2015-0493) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Similar works