An elasto-plastic damage model for concrete

Abstract

Constitutive modeling of concrete using continuum damage mechanics and plasticity theory is presented in this work. In order to derive the constitutive equations the strain equivalence hypothesis is adopted. Menetrey-William type yield function (in the effective stress space) with multiple hardening functions is used to define plastic loading of the material. Non-associated plastic flow rule is used to control inelastic dilatancy. DruckerPrager type function is chosen as a plastic potential. Damage is assumed to be isotropic and two damage variables are used to represent tensile and compressive damage independently. Damage parameter is driven based on the plastic strain. Fully implicit integration scheme is employed and the consistent elastic-plastic-damage tangent operator is also derived. The overall performance of the proposed model is verified by comparing the model predictions to various numerical simulations, cyclic uniaxial tensile and compressive tests, monotonic biaxial compression test and reinforced concrete beam test

    Similar works