thesis

Functional programming and embedded systems.

Abstract

Embedded computer systems seem to be the antithesis of functional language systems. Embedded systems are small, stand-alone, and are often forced to accept inelegant design compromises due to hardware cost. They run continuously and are reactive, that is, their primary goal is to monitor sensors and control effectors, using observed external events to trigger state-changing control actions. Yet this thesis describes how functional abstraction can tame the inelegance of embedded systems. Architectural compromises can be made in device drivers, programmed within the functional language, but a function-level interface is presented to the application programmer. Four modifications are introduced to a test-bed purely-functional language in order to facilitate embedded-systems programming: I/O register access; communicating processes; interrupts; and a real-time incremental garbage collector. Referential transparency is preserved. The conventional model of communicating processes is augmente..

    Similar works