Multiscale Modelling and Analysis of Tumour Growth and Treatment Strategies

Abstract

A multiscale, agent-based mathematical framework is here used to capture the multiscale nature of solid tumours. Tumour dynamics and treatment responses are modelled and simulated in silico. Details regarding cell cy-cle progression, tumour growth and oxygen distribution are included in the mathematical framework. Treatment responses to conventional anti-cancer therapies, such as chemotherapy and radiotherapy, as well as to more novel drugs, such as hypoxia-activated prodrugs and DNA-damage repair inhibit-ing drugs, are studied. Uncertainty and sensitivity analyses techniques are discussed in order to mitigate model uncertainty and interpret model sen-sitivity to parameter perturbations. This thesis furthermore discusses the role of mathematical modelling in current cancer research

    Similar works