Damages detection method of a long span beam was studied. The beam was designed to subject vibration in order to simulate service station of a real structure. The distributed dynamic strain on the beam was studied. Firstly, in order to reduce the dynamic data discriminate time, a new BOTDA method using amplitude transfer of BFS was applied. At the level of spatial resolution of 10 cm and the sampling interval of 5 cm of the BOTDA system, a sampling frequency for dynamic strain of about 13 Hz was achieved. Secondly, a cracks detection system based on distributed dynamic strain was provided. Most of the time, a real structure is undergoing dynamic load, therefore crack detection system of analyzing distributed dynamic strain was concerned. The work is unlike former research that was based on the distributed static strain analysis. Thirdly, a free vibration experiment was performed on a beam of 15 meters long in order to verify the dynamic crack detection system. In order to local the crack easily, the data from BOTDA were processed. Fourier Transform Analysis was adopted to transfer the distributed dynamic strains from time domain into frequency domain. Test results indicated that the distributed frequency amplitude analysis method provided a practical means to recognize the simulated cracks on the beam undergoing dynamic displacement