An experiment to assess vibration reduction ability of the rubber floating-slab tracks with different supporting forms

Abstract

The rubber floating-slab track is one of the best methods to isolate vibration induced by the interaction of the train and the rails. In order to improve its vibration reduction ability, three kinds of supporting forms, i.e. full-surface supporting, linear supporting and point-like supporting, were discussed by laboratory tests. Through time history analysis and frequency spectrum analysis, we found that the linear supporting form and the point-like supporting form have the smaller first resonant frequency than the full-surface supporting form, which is induced by the weakened supporting stiffness. Because of this reason, the maximum values of vibration acceleration of the floating slab for the linear supporting form and the point-like supporting form increase in the time domain and the frequency domain. However, the point-like supporting form has the smallest transfer ratio of vibration acceleration from the floating slab to the tunnel wall compared with the linear supporting form and the full-surface supporting form

    Similar works