End-effector vibrations reduction in trajectory tracking for mobile manipulator

Abstract

A method of motion planning for a mobile manipulator taking into account damping the end-effector vibrations is presented. The primary task of the robot is to trace a given end-effector trajectory. The redundant degrees of freedom are used to fulfil secondary objectives such as minimisation of platform kinetic energy and maximisation of holonomic manipulability measure, which leads to reduction of the end-effector vibrations. The method is based on Jacobian pseudo inverse at the acceleration level. Nonholonomic constraints in a Pfaffian form are explicitly incorporated to the control algorithm. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2, 0) class and SCARA-type holonomic manipulator operating in two-dimensional task space is also presented

    Similar works