CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Incorporating label dependencies in multilabel stance detection
Authors
W Ferreira
A Vlachos
Publication date
1 January 2019
Publisher
EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
Doi
Cite
Abstract
© 2019 Association for Computational Linguistics Stance detection in social media is a well-studied task in a variety of domains. Nevertheless, previous work has mostly focused on multiclass versions of the problem, where the labels are mutually exclusive, and typically positive, negative or neutral. In this paper, we address versions of the task in which an utterance can have multiple labels, thus corresponding to multilabel classification. We propose a method that explicitly incorporates label dependencies in the training objective and compare it against a variety of baselines, as well as a reduction of multilabel to multiclass learning. In experiments with three datasets, we find that our proposed method improves upon all baselines on two out of three datasets. We also show that the reduction of multilabel to multiclass classification can be very competitive, especially in cases where the output consists of a small number of labels and one can enumerate over all label combinations
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Apollo (Cambridge)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repository.cam.ac.uk:1...
Last time updated on 01/06/2020
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/08/2021