The MACHO collaboration lensing event statistics suggest that a significant
fraction of the dark galactic halo can be comprised of baryonic matter in the
form of white dwarf stars with masses between 0.1 and 1.0 \Msun . Such a halo
white dwarf population, in order to have escaped detection by those who observe
the white dwarf luminosity function of the disk, must have formed from an old
population. The observations indicate that the number of halo white dwarfs per
cubic parsec per unit bolometric magnitude is less than 10−5 at
10−4.5\Lsun; the number must rise significantly at lower luminosities to
provide the needed baryonic halo mass. Such white dwarfs may easily escape
detection in most current and earlier surveys. Though it is limited in angular
extent, the {\em Hubble Deep Field} (HDF) probes a sufficient volume of the
galactic halo to provide interesting limits on the number of halo white dwarf
stars, and on the fraction of the halo mass that they can make up. If the HDF
field can be probed for stars down to V=29.8 then the MACHO result suggests
that there could be up to 12 faint halo white dwarfs visible in the HDF.
Finding (or not finding) these stars in turn places interesting constraints on
star formation immediately following the formation of the galaxy.Comment: 10 pages, AASTEX, 1 table, no figures, accepted for publication in
Ap.J. Letter