Static recommendation methods like collaborative filtering suffer from the
inherent limitation of performing real-time personalization for cold-start
users. Online recommendation, e.g., multi-armed bandit approach, addresses this
limitation by interactively exploring user preference online and pursuing the
exploration-exploitation (EE) trade-off. However, existing bandit-based methods
model recommendation actions homogeneously. Specifically, they only consider
the items as the arms, being incapable of handling the item attributes, which
naturally provide interpretable information of user's current demands and can
effectively filter out undesired items. In this work, we consider the
conversational recommendation for cold-start users, where a system can both ask
the attributes from and recommend items to a user interactively. This important
scenario was studied in a recent work. However, it employs a hand-crafted
function to decide when to ask attributes or make recommendations. Such
separate modeling of attributes and items makes the effectiveness of the system
highly rely on the choice of the hand-crafted function, thus introducing
fragility to the system. To address this limitation, we seamlessly unify
attributes and items in the same arm space and achieve their EE trade-offs
automatically using the framework of Thompson Sampling. Our Conversational
Thompson Sampling (ConTS) model holistically solves all questions in
conversational recommendation by choosing the arm with the maximal reward to
play. Extensive experiments on three benchmark datasets show that ConTS
outperforms the state-of-the-art methods Conversational UCB (ConUCB) and
Estimation-Action-Reflection model in both metrics of success rate and average
number of conversation turns.Comment: TOIS 202