Patients increasingly turn to search engines and online content before, or in
place of, talking with a health professional. Low quality health information,
which is common on the internet, presents risks to the patient in the form of
misinformation and a possibly poorer relationship with their physician. To
address this, the DISCERN criteria (developed at University of Oxford) are used
to evaluate the quality of online health information. However, patients are
unlikely to take the time to apply these criteria to the health websites they
visit. We built an automated implementation of the DISCERN instrument (Brief
version) using machine learning models. We compared the performance of a
traditional model (Random Forest) with that of a hierarchical encoder
attention-based neural network (HEA) model using two language embeddings, BERT
and BioBERT. The HEA BERT and BioBERT models achieved average F1-macro scores
across all criteria of 0.75 and 0.74, respectively, outperforming the Random
Forest model (average F1-macro = 0.69). Overall, the neural network based
models achieved 81% and 86% average accuracy at 100% and 80% coverage,
respectively, compared to 94% manual rating accuracy. The attention mechanism
implemented in the HEA architectures not only provided 'model explainability'
by identifying reasonable supporting sentences for the documents fulfilling the
Brief DISCERN criteria, but also boosted F1 performance by 0.05 compared to the
same architecture without an attention mechanism. Our research suggests that it
is feasible to automate online health information quality assessment, which is
an important step towards empowering patients to become informed partners in
the healthcare process