research

Essential singularities of fractal zeta functions

Abstract

We study the essential singularities of geometric zeta functions ζL\zeta_{\mathcal L}, associated with bounded fractal strings L\mathcal L. For any three prescribed real numbers DD_{\infty}, D1D_1 and DD in [0,1][0,1], such that D<D1DD_{\infty}<D_1\le D, we construct a bounded fractal string L\mathcal L such that Dpar(ζL)=DD_{\rm par}(\zeta_{\mathcal L})=D_{\infty}, Dmer(ζL)=D1D_{\rm mer}(\zeta_{\mathcal L})=D_1 and D(ζL)=DD(\zeta_{\mathcal L})=D. Here, D(ζL)D(\zeta_{\mathcal L}) is the abscissa of absolute convergence of ζL\zeta_{\mathcal L}, Dmer(ζL)D_{\rm mer}(\zeta_{\mathcal L}) is the abscissa of meromorphic continuation of ζL\zeta_{\mathcal L}, while Dpar(ζL)D_{\rm par}(\zeta_{\mathcal L}) is the infimum of all positive real numbers α\alpha such that ζL\zeta_{\mathcal L} is holomorphic in the open right half-plane {Res>α}\{{\rm Re}\, s>\alpha\}, except for possible isolated singularities in this half-plane. Defining L\mathcal L as the disjoint union of a sequence of suitable generalized Cantor strings, we show that the set of accumulation points of the set SS_{\infty} of essential singularities of ζL\zeta_{\mathcal L}, contained in the open right half-plane {Res>D}\{{\rm Re}\, s>D_{\infty}\}, coincides with the vertical line {Res=D}\{{\rm Re}\, s=D_{\infty}\}. We extend this construction to the case of distance zeta functions ζA\zeta_A of compact sets AA in RN\mathbb{R}^N, for any positive integer NN.Comment: Theorem 3.2 (b) was wrong in the previous version, so we have decided to omit it and pursue this issue at some future time. Part (b) of Theorem 3.2. was not used anywhere else in the paper. Theorem 3.2. is now called Proposition 3.2. on page 12. Corrected minor typos and added new references To appear in: Pure and Applied Functional Analysis; issue 5 of volume 5 (2020

    Similar works

    Full text

    thumbnail-image

    Available Versions