Abstract

We report on manipulating the stimulated emission of monolayer molybdenum disulfide (MoS2) with the piezoelectric effect. The analysis is based on quantum mechanics. The stimulated emission of this two-dimensional material has been simulated to establish the relation between the total emission rate and the energy of the photon excitation. We demonstrate that the piezoelectric-induced charges enhance the emission rate by changing the carrier concentration. It is found that the emission intensity is proportional to the carrier density in the low-density range, and eventually reaches a steady value in the high-density region. An externally applied mechanical force also leads to a change in the second harmonic generation of the monolayer MoS2

    Similar works