research

Constrained realizations and minimum variance reconstruction of non-Gaussian random fields

Abstract

With appropriate modifications, the Hoffman--Ribak algorithm that constructs constrained realizations of Gaussian random fields having the correct ensemble properties can also be used to construct constrained realizations of those non-Gaussian random fields that are obtained by transformations of an underlying Gaussian field. For example, constrained realizations of lognormal, generalized Rayleigh, and chi-squared fields having nn degrees of freedom constructed this way will have the correct ensemble properties. The lognormal field is considered in detail. For reconstructing Gaussian random fields, constrained realization techniques are similar to reconstructions obtained using minimum variance techniques. A comparison of this constrained realization approach with minimum variance, Wiener filter reconstruction techniques, in the context of lognormal random fields, is also included. The resulting prescriptions for constructing constrained realizations as well as minimum variance reconstructions of lognormal random fields are useful for reconstructing masked regions in galaxy catalogues on smaller scales than previously possible, for assessing the statistical significance of small-scale features in the microwave background radiation, and for generating certain non-Gaussian initial conditions for NN-body simulations.Comment: 12 pages, gzipped postscript, MNRAS, in pres

    Similar works