Target of Rapamycin Inhibitors (TOR-I; Sirolimus and Everolimus) for Primary Immunosuppression in Kidney Transplant Recipients

Abstract

Background: Target of rapamycin inhibitors (TOR-I) (sirolimus, everolimus) are immunosuppressive agents with a novel mode of action but an uncertain clinical role. Objectives: To investigate the benefits and harms of immunosuppressive regimens containing TOR-I when compared to other regimens as initial therapy for kidney transplant recipients. Search strategy: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (in The Cochrane Library, issue 2, 2005), MEDLINE (1966-June 2005), EMBASE (1980-June 2005), the specialised register of the Cochrane Renal Group (June 2005)., and contacted authors and pharmaceutical companies to identify relevant studies. Selection criteria: All randomised controlled trials (RCTs) and quasi-RCTs where drug regimens containing TOR-I were compared to alternative drug regimens in the immediate post-transplant period were included, without age restriction, dosage or language of report. Data collection and analysis: Two reviewers independently assessed trials for eligibility and quality, and extracted data. Results are expressed as relative risk (RR) or weight mean difference (MD) with 95% confidence intervals (CI). Main results: Thirty three trials (142 reports) were included (sirolimus (27), everolimus (5), head-to-head (1)). When TOR-I replaced CNI there was no difference in acute rejection, but serum creatinine was lower (MD -18.31 micromol/L, -30.96 to -5.67), and bone marrow more suppressed (leucopenia: RR 2.02 1.12 to 3.66; thrombocytopenia: RR 6.97 2.97 to 16.36; anaemia: RR 1.67, 1.27 to 2.20). When TOR-I replaced antimetabolites, acute rejection (RR 0.84, 0.71 to 0.99) and cytomegalovirus infection (CMV) (RR 0.49; 0.37 to 0.65) were reduced, but hypercholesterolaemia was increased (RR 1.65, 1.32 to 2.06). For low versus high-dose TOR-I, with equal CNI dose, rejection was increased (RR 1.23, 1.06 to 1.43) but calculated GFR higher (MD 4.27 mL/min, 1.12 to 7.41), and for low-dose TOR-I/standard-dose CNI versus higher-dose TOR-I/reduced CNI, acute rejection (RR 0.67, 0.52 to 0.88) and calculated GFR (MD -9.46 mL/min, -12.16 to -6.76) were reduced. There was no significant difference in mortality, graft loss or malignancy risk for TOR-I in any comparison. Authors' conclusions: TOR-I have been evaluated in four different primary immunosuppressive algorithms; as replacement for CNI and for antimetabolites, in combination with CNI at low and high dose and with variable dose of CNI. Generally, surrogate endpoints for graft survival favour TOR-I (lower risk of acute rejection and higher GFR) and surrogate endpoints for patient outcomes are worsened by TOR-I (bone marrow suppression, lipid disturbance). Long-term hard-endpoint data from methodologically robust RCTs are still needed

    Similar works