research

Cluster Accretion Shocks as Possible Acceleration Sites for Ultra High Energy Protons below the Greisen Cutoff

Abstract

Three-dimensional hydrodynamic simulations of large scale structure in the Universe have shown that accretion shocks form during the gravitational collapse of one-dimensional caustics, and that clusters of galaxies formed at intersections of the caustics are surrounded by these accretion shocks. Estimated speed and curvature radius of the shocks are 1000-3000 \kms and about 5 Mpc, respectively, in the Ω=1\Omega=1 CDM universe. Assuming that energetic protons are accelerated by these accretion shocks via the first-order Fermi process and modeling particle transport around the shocks through Bohm diffusion, we suggest that protons can be accelerated up to the {\it Greisen cutoff energy} near 6×10196\times 10^{19} eV, provided the mean magnetic field strength in the region around the shocks is at least of order a microgauss. We have also estimated the proton flux at earth from the Virgo cluster. Assuming a few (1-10) \% of the ram pressure of the infalling matter would be transferred to the cosmic-rays, the estimated flux for E1019 E \sim 10^{19}eV is consistent with observations, so that such clusters could be plausible sources of the UHE CRs.Comment: 14 pages, uuencoded compressed postscript file. Accepted for Jan. 1, 1996 issue of Ap

    Similar works