research

Optimization of Picosecond Laser Parameters for Surface Treatment of Composites Using a Design of Experiments (DOE) Approach

Abstract

Based on guidelines from the Federal Aviation Administration, research supported by the NASA Advanced Composites Project is investigating methods to improve process control for surface preparation and pre-bond surface characterization on aerospace composite structures. The overall goal is to identify high fidelity, rapid, and reproducible surface treatments and surface characterization methods to reduce the uncertainty associated with the bonding process. The desired outcome is a more reliable bonded airframe structure, and to reduce time to achieve certification. In this work, a design of experiments (DoE) approach was conducted to determine optimum laser ablation conditions using a pulsed laser source with a nominal pulse width of 10 picoseconds. The laser power, frequency, scan speed, and number of passes (1 or 2) were varied within the laser system operating boundaries. Aerospace structural carbon fiber reinforced composites (Torayca 3900-2/T800H) were laser treated, then characterized for contamination, and finally bonded for mechanical testing. Pre-bond characterization included water contact angle (WCA) using a handheld device, ablation depth measurement using scanning electron microscopy (SEM), and silicone contamination measurement using laser induced breakdown spectroscopy (LIBS). In order to accommodate the large number of specimens in the DoE, a rapid-screening, double cantilever beam (DCB) test specimen configuration was devised based on modifications to ASTM D5528. Specimens were tested to assess the failure modes observed under the various laser surface treatment parameters. The models obtained from this DoE indicated that results were most sensitive to variation in the average laser power. Excellent bond performance was observed with nearly 100% cohesive failure for a wide range of laser parameters. Below about 200 mW, adhesive failure was observed because contamination was left on the surface. For laser powers greater than about 600 mW, large amounts of fiber were exposed, and the failure mode was predominately fiber tear

    Similar works