research

Controlled Environmental Effects on Creep Test Data of Woven Fabric Webbings for Inflatable Space Modules

Abstract

eveloping technologies for proposed lunar and Mars space exploration missions. Enhanced habitation sy g studied as potential habitats due to their inherent low mass and small launch volume. One goal of inflatable module research is quantification of the safe-life and end-of-life creep-strain spectrum. Full-scale pressurized inflatable modules are large, costly, and difficult to experimentally study. Therefore, material subcomponents are often studied as an alternative. An experimental thermally controlled long-term creep study of VectranTM webbings for application to inflatable modules is presented. Vectran fibers have high strength and low creep properties. High strength webbing materials are desirable for the load bearing restraint layer of inflatable modules because they are strong, flexible, and lightweight. Characterization of the creep behavior, safe-life, and end-of- life of webbing specimens will help quantify comparable life properties for inflatable modules. Several experimental multiple-year creep studies of webbing specimens in uncontrolled thermal environments have been conducted at NASA Langley Research Center. Experimental data obtained exhibits the classic creep-strain curve due to load, coupled with unique sinusoidal variation due to variation in temperature and humidity over daily and annual time periods. Results also have indicated that specimens fail within a year if the applied load is greater than 50 percent of the rated load. The primary goal of this study is to eliminate thermal effects from the creep data for a group of webbing specimens, and to allow uncontrolled thermal effects to influence the creep data of a second group of webbing specimens. Comparison of both sets of data will define how temperature influences creep data. A unique creep test facility was fabricated to facilitate the generation and comparison of the two sets of data. The facility consists of five creep test stands with an integrated heating and cooling system, and four creep test stands exposed to external environmental or ambient conditions. The facility contains displacement, temperature, humidity, and load sensors. Test specimens consist of one- inch wide, 48-inch long Vectran webbings rated at 12,500 pounds-per-inch. Experimental thermally controlled creep-strain data has been generated for two groups of webbing specimens. Applied load for all test stands was above 9000 lbs and greater than 50 percent of the rated load. Temperatures varied between 58F and 83F for the four test stands exposed to ambient conditions. Associated creep data exhibited the classic creep- strain profiles. The temperature was set to 72F for the five test stands in the controlled temperature environment. Creep data for tests with temperature control also exhibited the classic strain profiles. Data indicated that if the load is greater n thermal effects do not manifest. Therefore, creep tests with loads less than 50 percent of the rated load are planned for in the near future

    Similar works