research

Tuning Process for the Modified Magnussen Combustion Model

Abstract

In the application of CFD to turbulent reacting flows, one of the main limitations to predictive accuracy is the chemistry model. Using a full or skeletal kinetics model may provide good predictive ability, however, at considerable computational cost. Adding the ability to account for the interaction between turbulence and chemistry improves the overall fidelity of a simulation but adds to this cost. An alternative is the use of simple models, such as the Magnussen model, which has negligible computational overhead, but lacks general predictive ability except for cases that can be tuned to the flow being solved. In this paper, a technique will be described that allows the tuning of the Magnussen model for an arbitrary fuel and flow geometry without the need to have experimental data for a particular case. The tuning is based on comparing the results of the Magnussen model and full finite-rate chemistry when applied to perfectly and partially stirred reactor sim- ulations. In addition, a modification to the Magnussen model is proposed that allows the upper kinetic limit for the reaction rate to be set, giving better physical agreement with full kinetic mechanisms. In order to improve the agreement with flame temperatures, the thermal properties of the product species is adjusted to better match the mixture proper- ties of the full mechanism. The combustion model is then applied to the simulation of a representative scramjet flowpath, and the results compared to experimental data and other kinetic models. This procedure allows a simple reacting model to be used in a predictive manner, and affords significant savings in computational costs for CFD simulations

    Similar works