research

Additional Findings from the Common Research Model Natural Laminar Flow Wind Tunnel Test

Abstract

An experimental investigation of the Common Research Model with Natural Laminar Flow (CRM-NLF) took place in the National Transonic Facility (NTF) at the NASA Langley Research Center in 2018. The 5.2% scale semispan model was designed using a new natural laminar flow design method, Crossflow Attenuated NLF (CATNLF). CATNLF enables laminar flow on typical transport wings with high sweep and Reynolds number by reshaping the wing airfoils to obtain specific pressure distribution characteristics that control the crossflow growth near the leading edge. The CATNLF method also addresses Tollmien- Schlichting transition, attachment line transition, and Grtler vortices. During the wind tunnel test, data were acquired to address three primary test objectives: validate the CATNLF design method, characterize the NTF laminar flow testing capabilities, and establish best practices for laminar flow wind tunnel testing. The present paper provides both experimental and computational data to understand the CRM-NLF laminar flow characteristics, as well as address the three primary test objectives. The effects of angle of attack and Reynolds number on the CRM-NLF laminar flow extent are studied, and the dominant transition mechanism is evaluated at a variety of test conditions. Critical N-factors are calculated for the NTF environment, and a discussion on best practices for laminar flow wind tunnel testing is provided. The CRM-NLF in the NTF provided initial confirmation of the ability of the CATNLF method to suppress crossflow growth and enable significant extents of laminar flow on transport wings with high sweep and Reynolds numbers

    Similar works