research

Capturing an Evolving Nebular Environment: A Petrographic and Geochemical Study of a Type A, B & C CAI

Abstract

Calcium, Aluminum-rich Inclusions (CAIs) were the first formed solids in our Solar System, with mineral assemblages reflecting the first phases predicted to condense out of a hot nebular gas of Solar composition. Geochemical, textural and crystallographic information in CAIs can be used to constrain the temperature, pressure, and composition (e.g., oxygen fugacity) of the gaseous reservoir(s) from which they formed, as well as any secondary (nebular and parent body) processes they underwent. Coordinated geochemical and textural analyses provide information on nebular conditions (i.e., astrophysical environments and dynamics of nebular gas reservoirs) in which these CAIs formed. In order to better understand the evolution of nebular reservoirs at the time of CAI formation, we analyzed a Type A, B and C CAI using Electron Probe Micro-Analyzer (EPMA) and Electron BackScatter Diffraction (EBSD) at NASA Johnson Space Center (JSC)

    Similar works