research

Quadruple Simulations of Thermographic Inspections of Impacted Composites

Abstract

Thermography has been shown to be a viable technique for inspection of composites. Impact damage in composites typically contains multiple overlapping delaminations at different depths. Understanding the limitations of the thermographic inspection is enhanced by performing simulations of the technique. Most simulations of composite thermographic inspections have focused on simulations of a single delamination at a fixed depth. The quadrupole method has been shown as a viable technique for rapid three-dimensional thermographic simulations of a delamination. This method is expanded to enable rapid simulation of multiple overlapping delaminations at different depths. Quadrupole simulations are compared to finite element simulations of multiple delaminations at different depths. The simulations are also compared to the thermographic measurements on impacted composites where shape and depth of the delaminations are known from x-ray computed tomography data

    Similar works