research

The average cut-rank of graphs

Abstract

The cut-rank of a set XX of vertices in a graph GG is defined as the rank of the X×(V(G)X) X \times (V(G)\setminus X) matrix over the binary field whose (i,j)(i,j)-entry is 11 if the vertex ii in XX is adjacent to the vertex jj in V(G)XV(G)\setminus X and 00 otherwise. We introduce the graph parameter called the average cut-rank of a graph, defined as the expected value of the cut-rank of a random set of vertices. We show that this parameter does not increase when taking vertex-minors of graphs and a class of graphs has bounded average cut-rank if and only if it has bounded neighborhood diversity. This allows us to deduce that for each real α\alpha, the list of induced-subgraph-minimal graphs having average cut-rank larger than (or at least) α\alpha is finite. We further refine this by providing an upper bound on the size of obstruction and a lower bound on the number of obstructions for average cut-rank at most (or smaller than) α\alpha for each real α0\alpha\ge0. Finally, we describe explicitly all graphs of average cut-rank at most 3/23/2 and determine up to 3/23/2 all possible values that can be realized as the average cut-rank of some graph.Comment: 22 pages, 1 figure. The bound xnx_n is corrected. Accepted to European J. Combinatoric

    Similar works