research

Role of the Bifunctional Aminoacyl-tRNA Synthetase EPRS in Human Disease

Abstract

Aminoacyl-tRNA synthetases (AARS) are a class of enzymes that catalyze the charging of tRNAs with cognate amino acids, a critical step that contributes to the fidelity of protein synthesis. Many AARSs also possess noncanonical functions such as regulation of apoptosis, mRNA translation, and RNA splicing. Some AARSs have evolved new domains with no apparent connection to their charging functions. For example, WHEP domains were originally identified in tryptophanyl-tRNA synthetase (WRS), histidyl-tRNA synthetase (HRS), and glutamyl-prolyl-tRNA synthetase (EPRS). EPRS is a unique bifunctional AARS, found only in higher eukaryotes, and consists of glutamyl-tRNA synthetase (ERS) and prolyl-tRNA synthetase (PRS) joined by a non-catalytic linker containing three WHEP domains in humans. Two compound heterozygous point mutations within human ERS (P14R and E205G) have been identified in the genomes of two patients with type 1 diabetes and bone disease. However, the mechanism by which these mutations contribute to disease is unknown. Our goal is to determine whether the point mutations affect the canonical catalytic activity of EPRS responsible for tRNA charging or noncanonical functions. Both P14 and E205 are highly conserved residues located in the GST and catalytic domain, respectively. An ERS variant appended to 2.5 WHEP domains (ERS 2.5W) has been purified and shown to display robust tRNA binding and aminoacylation activity in vitro. The P14R and E205G single mutants display the same binding affinity for tRNAGlu as WT ERS 2.5W, suggesting that the observed defect is at the catalytic step. Whereas the ERS 2.5W P14R mutant has near wild-type (WT) aminoacylation activity, the ERS 2.5W E205G variant has a severe aminoacylation defect. Both mutations, however, lead to reduced amino acid activation. Together with a collaborator, we are currently characterizing the effect of these two mutations on cell proliferation and the integrated stress response. Taken together, this work has important implications for the understanding of AARS-related human disease mechanisms and development of new therapeutics.College of Arts & SciencesOffice of Undergraduate Research & Creative InquiryNo embargoAcademic Major: Biochemistr

    Similar works