research

The limit empirical spectral distribution of Gaussian monic complex matrix polynomials

Abstract

We define the empirical spectral distribution (ESD) of a random matrix polynomial with invertible leading coefficient, and we study it for complex n×nn \times n Gaussian monic matrix polynomials of degree kk. We obtain exact formulae for the almost sure limit of the ESD in two distinct scenarios: (1) nn \rightarrow \infty with kk constant and (2) kk \rightarrow \infty with nn constant. The main tool for our approach is the replacement principle by Tao, Vu and Krishnapur. Along the way, we also develop some auxiliary results of potential independent interest: we slightly extend a result by B\"{u}rgisser and Cucker on the tail bound for the norm of the pseudoinverse of a non-zero mean matrix, and we obtain several estimates on the singular values of certain structured random matrices.Comment: 25 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/06/2022