research

Minimum Race-Time Planning-Strategy for an Autonomous Electric Racecar

Abstract

Increasing attention to autonomous passenger vehicles has also attracted interest in an autonomous racing series. Because of this, platforms such as Roborace and the Indy Autonomous Challenge are currently evolving. Electric racecars face the challenge of a limited amount of stored energy within their batteries. Furthermore, the thermodynamical influence of an all-electric powertrain on the race performance is crucial. Severe damage can occur to the powertrain components when thermally overstressed. In this work we present a race-time minimal control strategy deduced from an Optimal Control Problem (OCP) that is transcribed into a Nonlinear Problem (NLP). Its optimization variables stem from the driving dynamics as well as from a thermodynamical description of the electric powertrain. We deduce the necessary first-order Ordinary Differential Equations (ODE)s and form simplified loss models for the implementation within the numerical optimization. The significant influence of the powertrain behavior on the race strategy is shown.Comment: Accepted at The 23rd IEEE International Conference on Intelligent Transportation Systems, September 20 - 23, 202

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/08/2021