Remote Detection of Concealed Guns and Explosives

Abstract

A reliable method of remotely detecting concealed guns and explosives attached to the human body is of great interest to governments and security forces throughout the world. This thesis describes the development and trials of a new remote non-imaging concealed threat detection method using active millimetre wave radar using the microwave and mmwave frequencies bands 14 – 40 and 75 – 110 GHz (Ku, K, Ka and W). The method is capable of not only screening for concealed objects, like the current generation of concealed object detectors, but also of differentiating between mundane and threat objects. The areas focused upon during this investigation were: identifying the impact of different commonly worn fabrics as barriers to detection; consulting with end users about their requirements and operational needs; a comparison of different frequency bands for the detection of guns and explosives; exploring the effects of polarisation on object detection; a performance comparison of different detection schemes using Artificial Neural Networks; improving existing data acquisition systems and prototyping of a real-time capture system

    Similar works