research

Local uniqueness of vortices for 2D steady Euler flow

Abstract

We study the steady planar Euler flow in a bounded simply connected domain, where the vortex function is f=t+pf=t_+^p with p>0p>0 and the vorticity strength is prescribed. By studying the location and local uniqueness of vortices, we prove that the vorticity method and the stream function method actually give the same solution. We also show that if the vorticity of flow is located near an isolated minimum point and non-degenerate critical point of the Kirchhoff-Routh function, it must be stable in the nonlinear sense.Comment: 47 pages. arXiv admin note: text overlap with arXiv:1703.0986

    Similar works

    Full text

    thumbnail-image

    Available Versions