CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Human white-fat thermogenesis: Experimental and meta-analytic findings
Authors
K Athanasiou
AE Carrillo
+19 more
S Chatziioannou
PC Dinas
AD Flouris
A Georgakopoulos
P Georgoulias
P Gkiata
M Granzotto
LG Ioannou
AZ Jamurtas
E Karachaliou
Y Koutedakis
J Koutsikos
A Krase
M Metaxas
GS Metsios
E Nintou
M Rossato
T S. Mayor
R Vettor
Publication date
11 May 2020
Publisher
'Informa UK Limited'
Doi
Cite
Abstract
© 2020 The Authors. Published by Taylor & Francis. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1080/23328940.2020.1769530White adipose tissue (WAT) thermogenic activity may play a role in whole-body energy balance and two of its main regulators are thought to be environmental temperature (Tenv) and exercise. Low Tenv may increase uncoupling protein one (UCP1; the main biomarker of thermogenic activity) in WAT to regulate body temperature. On the other hand, exercise may stimulate UCP1 in WAT, which is thought to alter body weight regulation. However, our understanding of the roles (if any) of Tenv and exercise in WAT thermogenic activity remains incomplete. Our aim was to examine the impacts of low Tenv and exercise on WAT thermogenic activity, which may alter energy homeostasis and body weight regulation. We conducted a series of four experimental studies, supported by two systematic reviews and meta-analyses. We found increased UCP1 mRNA (p = 0.03; but not protein level) in human WAT biopsy samples collected during the cold part of the year, a finding supported by a systematic review and meta-analysis (PROSPERO review protocol: CRD42019120116). Additional clinical trials (NCT04037371; NCT04037410) using Positron Emission Tomography/Computed Tomography (PET/CT) revealed no impact of low Tenv on human WAT thermogenic activity (p > 0.05). Furthermore, we found no effects of exercise on UCP1 mRNA or protein levels (p > 0.05) in WAT biopsy samples from a human randomized controlled trial (Clinical trial: NCT04039685), a finding supported by systematic review and meta-analytic data (PROSPERO review protocol: CRD42019120213). Taken together, the present experimental and meta-analytic findings of UCP1 and SUVmax, demonstrate that cold and exercise may play insignificant roles in human WAT thermogenic activity. Abbreviations: WAT:White adipose tissue; Tenv: Environmental temperature; UCP1: Uncoupling protein one; BAT: Brown adipose tissue; BMI:Body mass index; mRNA: Messenger ribonucleic acid; RCT: Randomized controlled trial; WHR: Waist-to-hip ratio; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; PET/CT: Positron Emission Tomography and Computed Tomography; REE: Resting energy expenditure; 18F-FDG: F18 fludeoxyglucose; VO2peak:Peak oxygen consumption; 1RM: One repetition maximum; SUVmax: Maximum standardized uptake value; Std: Standardized mean difference.This work was supported by funding from the European Union 7th Framework Program FP7-PEOPLE-2012-IRSES grant no. [319010]; FP7-PEOPLE-2013-IRSES grant no. [612547] and Horizon 2020 ICI-THROUGH grant no [645710].Published versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Archivio istituzionale della ricerca - Università di Padova
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.research.unipd.it:1157...
Last time updated on 21/03/2021
Wolverhampton Intellectual Repository and E-theses
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:wlv.openrepository.com:243...
Last time updated on 28/08/2021
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/05/2021