CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Cost-Function-Based Hypothesis Control Techniques for Multiple Hypothesis Tracking
Authors
Peter S. Maybeck
Jason L. Williams
Publication date
1 May 2006
Publisher
AFIT Scholar
Abstract
The problem of tracking targets in clutter naturally leads to a Gaussian mixture representation of the probability density function of the target state vector. Modern tracking methods maintain the mean, covariance and probability weight corresponding to each hypothesis, yet they rely on simple merging and pruning rules to control the growth of hypotheses. This paper proposes a structured, cost-function-based approach to the hypothesis control problem, utilizing the Integral Square Error (ISE) cost measure. A comparison of track life performance versus computational cost is made between the ISE-based filter and previously proposed approximations including simple pruning, Singer’s n-scan memory filter, Salmond’s joining filter, and Chen and Liu’s Mixture Kalman Filter (MKF). The results demonstrate that the ISE-based mixture reduction algorithm provides mean track life which is significantly greater than that of the compared techniques using similar numbers of mixture components, and mean track life competitive with that of the compared algorithms for similar mean computation times. Abstract © Elsevie
Similar works
Full text
Available Versions
AFTI Scholar (Air Force Institute of Technology)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:scholar.afit.edu:facpub-14...
Last time updated on 12/05/2020