ABSRACT:We show how to use 21-cm emission and absorption studies to estimate
the heat inputs to the neutral gas in low pressure environments, such as in
outer disks of spiral galaxies, in galactic halos or in intergalactic space.
For a range of model parameters we calculate the gas kinetic and spin
temperatures (TK and TS) and the relation between TS and the heat
input to the gas. We outline the conditions for a ``two phase medium'' to
exist. We find that although TS can be much smaller than TK, TS is
always ≫3 K for column densities greater that 5×1018
cm−2. This excludes the possibility that relevant HI masses at the
periphery of galaxies are invisible at 21-cm in emission. The outermost
interstellar gas in a disk galaxy is more directly affected by external
processes and in this paper we estimate the intensity of the extragalactic
background at energies close to 0.1 keV by comparing our theoretical results
with HI emission/absorption studies. We take into account the possibility that
some energy produced in the inner regions affects the energy balance in outer
regions. We find that in the absence of any other local heat source QSO
dominated background models are still compatible with the spin temperature
limits derived for the two best documented HI emission/absorption studies in
outer regions.Comment: 24 pages, 8 figures ARCETRI-PR-93-2