Cyclic Regeneration of Nanostructured Composites for Catalytic Applications

Abstract

A cermet catalyst material, defining a matrix having interconnected open pores, the matrix selected from the group consisting of YSZ and CGO and defining a substrate, a ceramic coating having a general formula AyBnOx at least partially coating the pores, and a plurality of metal particles A at least partially embedded in the ceramic coating. A is selected from the group consisting of Co, Cu, Ce, Ni, Ti, and combinations thereof and B is selected from the group consisting of Mo, W, Ce, and combinations thereof. When the coating is in a first oxidizing atmosphere and at a temperature between 400 degrees Celsius and 800 degrees Celsius the metal particles are absorbed into the coating in the form of metal cations, giving the coating the general formulation AyBnOx. When the coating is in a reducing atmosphere and at a temperature between about 400 degrees Celsius and about 800 degrees Celsius the B metal cations emerge from the coating to yield a plurality of B metal particles at least partially embedded in the coating, wherein the reduced coating has a general formula Ay-zBnOx, wherein y \u3e z and x′ \u3e x

    Similar works