research

Exact ground states of quantum many-body systems under confinement

Abstract

Knowledge of the ground state of a homogeneous quantum many-body system can be used to find the exact ground state of a dual inhomogeneous system with a confining potential. For the complete family of parent Hamiltonians with a ground state of Bijl-Jastrow form in free space, the dual system is shown to include a one-body harmonic potential and two-body long-range interactions. The extension to anharmonic potentials and quantum solids with Nosanov-Jastrow wavefunctions is also presented. We apply this exact mapping to construct eigenstates of trapped systems from free-space solutions with a variety of pair correlation functions and interparticle interactions.Comment: 6 page

    Similar works

    Full text

    thumbnail-image