research

The universal DAHA of type (C1∨,C1)(C_1^\vee,C_1) and Leonard triples

Abstract

Assume that F\mathbb F is an algebraically closed field and qq is a nonzero scalar in F\mathbb F that is not a root of unity. The universal Askey--Wilson algebra β–³q\triangle_q is a unital associative F\mathbb F-algebra generated by A,B,CA,B, C and the relations state that each of A+qBCβˆ’qβˆ’1CBq2βˆ’qβˆ’2,B+qCAβˆ’qβˆ’1ACq2βˆ’qβˆ’2,C+qABβˆ’qβˆ’1BAq2βˆ’qβˆ’2 A+\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \qquad B+\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \qquad C+\frac{q AB-q^{-1} BA}{q^2-q^{-2}} is central in β–³q\triangle_q. The universal DAHA Hq\mathfrak H_q of type (C1∨,C1)(C_1^\vee,C_1) is a unital associative F\mathbb F-algebra generated by {tiΒ±1}i=03\{t_i^{\pm 1}\}_{i=0}^3 and the relations state that \begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \quad \hbox{for all i=0,1,2,3i=0,1,2,3}; \\ \hbox{ti+tiβˆ’1t_i+t_i^{-1} is central} \quad \hbox{for all i=0,1,2,3i=0,1,2,3}; \\ t_0t_1t_2t_3=q^{-1}. \end{gather*} It was given an F\mathbb F-algebra homomorphism β–³qβ†’Hq\triangle_q\to \mathfrak H_q that sends \begin{eqnarray*} A &\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\ B &\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\ C &\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \end{eqnarray*} Therefore any Hq\mathfrak H_q-module can be considered as a β–³q\triangle_q-module. Let VV denote a finite-dimensional irreducible Hq\mathfrak H_q-module. In this paper we show that A,B,CA,B,C are diagonalizable on VV if and only if A,B,CA,B,C act as Leonard triples on all composition factors of the β–³q\triangle_q-module VV.Comment: arXiv admin note: text overlap with arXiv:2003.0625

    Similar works

    Full text

    thumbnail-image

    Available Versions