We present a subjective equilibrium notion (called "subjective equilibrium
under beliefs of exogenous uncertainty (SEBEU)" for stochastic dynamic games in
which each player chooses its decisions under the (incorrect) belief that a
stochastic environment process driving the system is exogenous whereas in
actuality this process is a solution of closed-loop dynamics affected by each
individual player. Players observe past realizations of the environment
variables and their local information. At equilibrium, if players are given the
full distribution of the stochastic environment process as if it were an
exogenous process, they would have no incentive to unilaterally deviate from
their strategies. This notion thus generalizes what is known as the
price-taking equilibrium in prior literature to a stochastic and dynamic setup.
We establish existence of SEBEU, study various properties and present explicit
solutions. We obtain the ϵ-Nash equilibrium property of SEBEU when
there are many players