Motivation: Alignment-free distance and similarity functions (AF functions,
for short) are a well established alternative to two and multiple sequence
alignments for many genomic, metagenomic and epigenomic tasks. Due to
data-intensive applications, the computation of AF functions is a Big Data
problem, with the recent Literature indicating that the development of fast and
scalable algorithms computing AF functions is a high-priority task. Somewhat
surprisingly, despite the increasing popularity of Big Data technologies in
Computational Biology, the development of a Big Data platform for those tasks
has not been pursued, possibly due to its complexity. Results: We fill this
important gap by introducing FADE, the first extensible, efficient and scalable
Spark platform for Alignment-free genomic analysis. It supports natively
eighteen of the best performing AF functions coming out of a recent hallmark
benchmarking study. FADE development and potential impact comprises novel
aspects of interest. Namely, (a) a considerable effort of distributed
algorithms, the most tangible result being a much faster execution time of
reference methods like MASH and FSWM; (b) a software design that makes FADE
user-friendly and easily extendable by Spark non-specialists; (c) its ability
to support data- and compute-intensive tasks. About this, we provide a novel
and much needed analysis of how informative and robust AF functions are, in
terms of the statistical significance of their output. Our findings naturally
extend the ones of the highly regarded benchmarking study, since the functions
that can really be used are reduced to a handful of the eighteen included in
FADE