research

Anisotropy Studies of the Unresolved Far-infrared Background

Abstract

Dusty, starforming galaxies and active galactic nuclei that contribute to the integrated background intensity at far-infrared wavelengths trace the large-scale structure. Below the point source detection limit, correlations in the large-scale structure lead to clustered anisotropies in the unresolved component of the far-infrared background (FIRB). The angular power spectrum of the FIRB anisotropies could be measured in large-area surveys with the Spectral and Photometric Imaging Receiver (SPIRE) on the upcoming Herschel observatory. To study statistical properties of these anisotropies, the confusion from foreground Galactic dust emission needs to be reduced even in the ``cleanest'' regions of the sky.The multi-frequency coverage of SPIRE allows the foreground dust to be partly separated from the extragalactic background composed of dusty starforming galaxies as well as faint normal galaxies. The separation improves for fields with sizes greater than a few hundred square degrees and when combined with Planck data. We show that an area of about āˆ¼\sim 400 degrees2^2 observed for about 1000 hours with Herschel-SPIRE and complemented by Planck provides maximal information on the anisotropy power spectrum. We discuss the scientific studies that can be done with measurements of the unresolved FIRB anisotropies including a determination of the large scale bias and the small-scale halo occupation distribution of FIRB sources with fluxes below the point-source detection level.Comment: 10 pages, 8 figures, replaced to match the extended version, accepted by Ap

    Similar works

    Available Versions

    Last time updated on 05/06/2019