research

Primordial helium recombination III: Thomson scattering, isotope shifts, and cumulative results

Abstract

Upcoming precision measurements of the temperature anisotropy of the cosmic microwave background (CMB) at high multipoles will need to be complemented by a more complete understanding of recombination, which determines the damping of anisotropies on these scales. This is the third in a series of papers describing an accurate theory of HeI and HeII recombination. Here we describe the effect of Thomson scattering, the 3^3He isotope shift, the contribution of rare decays, collisional processes, and peculiar motion. These effects are found to be negligible: Thomson and 3^3He scattering modify the free electron fraction xex_e at the level of several ×104\times 10^{-4}. The uncertainty in the 23Po11S2^3P^o-1^1S rate is significant, and for conservative estimates gives uncertainties in xex_e of order 10310^{-3}. We describe several convergence tests for the atomic level code and its inputs, derive an overall CC_\ell error budget, and relate shifts in xe(z)x_e(z) to the changes in CC_\ell, which are at the level of 0.5% at =3000\ell =3000. Finally, we summarize the main corrections developed thus far. The remaining uncertainty from known effects is 0.3\sim 0.3% in xex_e.Comment: 19 pages, 15 figures, to be submitted to PR

    Similar works

    Available Versions

    Last time updated on 02/01/2020