research

A relation between chiral central charge and ground state degeneracy in 2+1-dimensional topological orders

Abstract

A bosonic topological order on dd-dimensional closed space Σd\Sigma^d may have degenerate ground states. The space Σd\Sigma^d with different shapes (different metrics) form a moduli space MΣd{\cal M}_{\Sigma^d}. Thus the degenerate ground states on every point in the moduli space MΣd{\cal M}_{\Sigma^d} form a complex vector bundle over MΣd{\cal M}_{\Sigma^d}. It was suggested that the collection of such vector bundles for dd-dimensional closed spaces of all topologies completely characterizes the topological order. Using such a point of view, we propose a direct relation between two seemingly unrelated properties of 2+1-dimensional topological orders: (1) the chiral central charge cc that describes the many-body density of states for edge excitations (or more precisely the thermal Hall conductance of the edge), (2) the ground state degeneracy DgD_g on closed genus gg surface. We show that cDg/2Z, g3c D_g/2 \in \mathbb{Z},\ g\geq 3 for bosonic topological orders. We explicitly checked the validity of this relation for over 140 simple topological orders. For fermionic topological orders, let Dg,σeD_{g,\sigma}^{e} (Dg,σoD_{g,\sigma}^{o}) be the degeneracy with even (odd) number of fermions for genus-gg surface with spin structure σ\sigma. Then we have 2cDg,σeZ2c D_{g,\sigma}^{e} \in \mathbb{Z} and 2cDg,σoZ2c D_{g,\sigma}^{o} \in \mathbb{Z} for g3g\geq 3.Comment: 8 pages. This paper supersedes Section XIV of an unpublished work arXiv:1405.5858. We add new results on fermionic topological orders and some numerical check

    Similar works