Stellar activity remains a limiting factor in measuring precise planet
parameters from radial velocity spectroscopy, not least in the search for Earth
mass planets orbiting in the habitable zones of Sun-like stars. One approach to
mitigate stellar activity is to use combined analyses of both radial velocity
and time-series photometry. We present an analysis of simultaneous
disk-integrated photometry and radial velocity data of the Sun in order to
determine the useful limits of a combined analysis. We find that simple
periodogram or autocorrelation analysis of solar photometry give the correct
rotation period <50% of the time. We therefore use a Gaussian process to
investigate the time variability of solar photometry and to directly compare
simultaneous photometry with radial velocity data. We find that the
hyperparameter posteriors are relatively stable over 70 years of solar
photometry and the amplitude tracks the solar cycle. We observe good agreement
between the hyperparameter posteriors for the simultaneous photometry and
radial velocity data. Our primary conclusion is a recommendation to include an
additional prior in Gaussian process fits to constrain the evolutionary
timescale to be greater than the recurrence timescale (ie., the rotation
period) to recover more physically plausible and useful results. Our results
indicate that such simultaneous monitoring may be a useful tool in enhancing
the precision of radial velocity surveys.Comment: 10 pages, accepted in A