Validation of the Haptic Cow: A simulator for training veterinary students

Abstract

A virtual reality simulator, the Haptic Cow, has been developed using touch feedback technology for training veterinary students to perform bovine rectal palpation of the reproductive tract. The simulator was designed to supplement existing training and address some of the difficulties associated with teaching palpation-based skills. Students need to achieve a certain level of proficiency by graduation but this has become increasingly difficult because of problems with current training methods and a reduction in the number of opportunities to practice. A simulator- based teaching tool was developed as a potential solution. The first step involved designing a simulator on the basis of requirements established through consultation with both veterinary surgeons, as teachers, and students, as learners. Research was then undertaken to validate the simulator by following a set of established criteria described for the evaluation of new technologies used in medical education. The virtual models were assessed by experts as realistic enough representations of the same structures in the cow. An experiment to assess the effect of simulator training compared the performance of one group of students, whose training was supplemented with a simulator session, with another group of traditionally trained students. The subsequent performance for finding and identifying the uterus when examining cows for the first time, was significantly better for the simulator trained group, indicating that skills learned in the simulator environment transferred to the real task. A project was also undertaken to integrate the simulator into a curriculum, with training included as part of the farm animal course at the University of Glasgow Veterinary School. The training was well received by students, useful feedback was gathered and the simulator continues to be used as part of the course. Further developments were undertaken with the aim of creating a more versatile teaching tool and addressing some of the questions and issues raised. An automated version of the Haptic Cow was designed for students to use on their own, with computer guidance replacing the instructor's role. An evaluation found that the new version of the teaching tool was both usable and an effective way of equipping students with the skills required to find and identify the uterus. The potential to use haptic technology to investigate various aspects of performance was also explored in relation to the question of hand choice for certain palpation-based skills: differentiating between objects on the basis of softness and size. Ongoing research and development options are discussed, with the aim of building on the current work by expanding the role of haptic technology in veterinary education in the future

    Similar works