We explore the usefulness of future gravitational microlensing surveys in the
study of binary properties such as the binary fraction and the distributions of
binary separation and mass ratio by using the binary sample detectable through
a channel of repeating events. For this, we estimate the rate of repeating
microlensing eventstoward the Galactic bulge field based on standard models of
dynamical and physical distributions of Galactic matter combined with models of
binary separation and mass function. From this, we find that the total number
of repeating events expected to be detected from ∼4-year space-based
surveys will be ∼200--400, that is ∼40--50 times higher than the
rate of current surveys. We find that the high detection rate is due to the
greatly improved sensitivity to events associated with faint source stars and
low-magnification events. We find that the separation range of the binaries to
be covered by the repeating events will extend up to 100 AU. Therefore, the
future lensing surveys will provide a homogeneous sample that will allow to
investigate the statistical properties of Galactic binaries unbiased by
brightness of the binary components.Comment: total 6 pages, including 4 figures, ApJ, in pres