This thesis is concerned with the Schrödinger representation of quantum field theory. We describe techniques for solving the Schrödinger equation which supplement the standard techniques of field theory. Our aim is to develop these to the point where they can readily be used to address problems of current interest. To this end, we study realistic models such as gauge theories coupled to dynamical fermions. For maximal generality we consider particles of all physical spins, in various dimensions, and eventually, curved spacetimes. We begin by considering Gaussian fields, and proceed to a detailed study of the Schwinger model, which is, amongst other things, a useful model for (3+1) dimensional gauge theory. One of the most important developments of recent years is a conjecture by Mal-dacena which relates supergravity and string/M-theory on anti-de-Sitter spacetimes to conformal field theories on their boundaries. This correspondence has a natural interpretation in the Schrödinger representation, so we solve the Schrödinger equation for fields of arbitrary spin in anti-de-Sitter spacetimes, and use this to investigate the conjectured correspondence. Our main result is to calculate the Weyl anomalies arising from supergravity fields, which, summed over the supermultiplets of type JIB supergravity compactified on AdS(_s) x S(^5) correctly matches the anomaly calculated in the conjecturally dual N = 4 SU{N) super-Yang-Mills theory. This is one of the few existing pieces of evidence for Maldacena's conjecture beyond leading order in TV