Controlling Terahertz Radiation - Novel Fabrication Methods and Materials for Terahertz Components

Abstract

The interaction between light and matter has been a field of research for centuries, from the days of Sir Isaac Newton in the 17th century up to today, where new effects, such as plasmonics open up new applications or the extension of the accessible electromagnetic spectrum, are still engaging scientists and engineers in this field of research. The understanding of the interaction between light, or more general: electromagnetic radiation and matter is a crucial step in the development of components which give the necessary control to gain access to the desired part of the electromagnetic spectrum. One of the less developed parts of the electromagnetic spectrum is terahertz (THz) radiation. THz radiation promises many applications, from spectroscopy for material and medical applications to communication technology. But, so far, most applications have not managed to overcome the experimental status, mostly because of missing materials and manufacturing methods suitable for the required length scales and material properties in the terahertz regime. This thesis focuses on structures for the control of THz radiation. To do so, and to overcome the natural limitations of many materials in the THz region, new materials and modern fabrication techniques are used to find new ways to overcome the shortage of readily available components for this part of the electromagnetic spectrum. As such, ceramics and polymers are used for various components, from lenses to spoof plasmonic waveguides, fabricated with a variety of techniques, including 3D printing and micro-milling. Finite-Difference Time-Domain simulations are used for the design of all structures. The ultimate goal is to demonstrate low-cost methods to produce THz components for future industrial implementation

    Similar works