Investigating the mechanism of human beta defensin-2-mediated protection of skin barrier in vitro

Abstract

The human skin barrier is a biological imperative. Chronic inflammatory skin diseases, such as Atopic Dermatitis (AD), are characterised by a reduction in skin barrier function and an increased number of secondary infections. Staphyloccocus aureus (S. aureus) has an increased presence on AD lesional skin and contributes significantly to AD pathology. It was previously demonstrated that the damage induced by a virulence factor of S. aureus, V8 protease, which causes further breakdown in skin barrier function, can be reduced by induction of human β- defensin (HBD)2 (by IL-1β) or exogenous HBD2 application. Induction of this defensin is impaired in AD skin. This thesis examines the mechanism of HBD2-mediated barrier protection in vitro; demonstrating that in this system, HBD2 was not providing protection through direct protease inhibition, nor was it altering keratinocyte proliferation or migration, or exhibiting specific localisation within the monolayer. Proteomics data demonstrated that HBD2 did not induce expression of known antiproteases but suggested that HBD2 stimulation may function by modulating expression of extracellular matrix proteins, specifically collagen- IVα2 and Laminin-β-1. Alternative pathways of protection initiated by IL-1β and TNFα stimulation were also investigated, as well as their influence over generalised wound healing. Finally, novel 3D human skin epidermal models were used to better recapitulate the structure of human epidermis and examine alterations to skin barrier function in a more physiological system. These data validate the barrier-protective properties of HBD2 and extended our knowledge of the consequences of exposure to this peptide in this context

    Similar works