Using the Gemini Near-InfraRed Spectrograph (GNIRS), we have assembled a
complete sample of 20 K-selected galaxies at 2.0<z<2.7 with high quality
near-infrared spectra. As described in a previous paper, 9 of these 20 galaxies
have strongly suppressed star formation and no detected emission lines. The
present paper concerns the 11 galaxies with detected Halpha emission, and
studies the origin of the line emission using the GNIRS spectra and follow-up
observations with SINFONI on the VLT. Based on their [NII]/Halpha ratios, the
spatial extent of the line emission and several other diagnostics, we infer
that four of the eleven emission-line galaxies host narrow line active galactic
nuclei (AGNs). The AGN host galaxies have stellar populations ranging from
evolved to star-forming. Combining our sample with a UV-selected galaxy sample
at the same redshift that spans a broader range in stellar mass, we find that
black-hole accretion is more effective at the high-mass end of the galaxy
distribution (~2.9x10^11 Msun) at z~2.3. Furthermore, by comparing our results
with SDSS data, we show that the AGN activity in massive galaxies has decreased
significantly between z~2.3 and z~0. AGNs with similar normalized accretion
rates as those detected in our K-selected galaxies reside in less massive
galaxies (~4.0x10^10 Msun) at low redshift. This is direct evidence for
downsizing of AGN host galaxies. Finally, we speculate that the typical stellar
mass-scale of the actively accreting AGN host galaxies, both at low and at high
redshift, might be similar to the mass-scale at which star-forming galaxies
seem to transform into red, passive systems.Comment: Accepted for publication in the Astrophysical Journa